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Big data has become an important issue for a large number of research areas such as data mining, machine
learning, computational intelligence, information fusion, the semantic Web, and social networks. The rise of
different big data frameworks such as Apache Hadoop and, more recently, Spark, for massive data processing
based on the MapReduce paradigm has allowed for the efficient utilisation of data mining methods and ma-
chine learning algorithms in different domains. A number of libraries such as Mahout and SparkMLib have
been designed to develop new efficient applications based on machine learning algorithms. The combina-
tion of big data technologies and traditional machine learning algorithms has generated new and interesting
challenges in other areas as social media and social networks. These new challenges are focused mainly on
problems such as data processing, data storage, data representation, and how data can be used for pattern
mining, analysing user behaviours, and visualizing and tracking data, among others. In this paper, we present
a revision of the new methodologies that is designed to allow for efficient data mining and information fu-
sion from social media and of the new applications and frameworks that are currently appearing under the

“umbrella” of the social networks, social media and big data paradigms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Data volume and the multitude of sources have experienced
exponential growth, creating new technical and application chal-
lenges; data generation has been estimated at 2.5 Exabytes (1 Ex-
abyte = 1.000.000 Terabytes) of data per day [1]. These data come
from everywhere: sensors used to gather climate, traffic and flight
information, posts to social media sites (Twitter and Facebook are
popular examples), digital pictures and videos (YouTube users upload
72 hours of new video content per minute [2]), transaction records,
and cell phone GPS signals, to name a few. The classic methods, al-
gorithms, frameworks, and tools for data management have become
both inadequate for processing this amount of data and unable to of-
fer effective solutions for managing the data growth. The problem of
managing and extracting useful knowledge from these data sources is
currently one of the most popular topics in computing research [3,4].

In this context, big data is a popular phenomenon that aims to
provide an alternative to traditional solutions based on databases and
data analysis. Big data is not just about storage or access to data; its
solutions aim to analyse data in order to make sense of them and
exploit their value. Big data refers to datasets that are terabytes to
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petabytes (and even exabytes) in size, and the massive sizes of these
datasets extend beyond the ability of average database software tools
to capture, store, manage, and analyse them effectively.

The concept of big data has been defined through the 3V model,
which was defined in 2001 by Laney [5] as: “high-volume, high-
velocity and high-variety information assets that demand cost-effective,
innovative forms of information processing for enhanced insight and de-
cision making”. More recently, in 2012, Gartner [6] updated the def-
inition as follows: “Big data is high volume, high velocity, and/or high
variety information assets that require new forms of processing to enable
enhanced decision making, insight discovery and process optimization”.
Both definitions refer to the three basic features of big data: Volume,
Variety, and Velocity. Other organisations, and big data practitioners
(e.g., researchers, engineers, and so on), have extended this 3V model
to a 4V model by including a new “V”: Value [7]. This model can be
even extended to 5Vs if the concepts of Veracity is incorporated into
the big data definition.

Summarising, this set of x*V-models provides a straightforward
and widely accepted definition related to what is (and what is not) a
big-data-based problem, application, software, or framework. These
concepts can be briefly described as follows [5,7]:

o Volume: refers to large amounts of any kind of data from any
different sources, including mobile digital data creation devices
and digital devices. The benefit from gathering, processing,
and analysing these large amounts of data generates a number
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of challenges in obtaining valuable knowledge for people and
companies (see Value feature).
Velocity: refers to the speed of data transfers. The data’s contents
are constantly changing through the absorption of complemen-
tary data collections, the introduction of previous data or legacy
collections, and the different forms of streamed data from multi-
ple sources. From this point of view, new algorithms and meth-
ods are needed to adequately process and analyse the online and
streaming data.

o Variety: refers to different types of data collected via sensors,
smartphones or social networks, such as videos, images, text, au-
dio, data logs, and so on. Moreover, these data can be structured
(such as data from relational databases) or unstructured in format.

o Value: refers to the process of extracting valuable information
from large sets of social data, and it is usually referred to as big
data analytics. Value is the most important characteristic of any
big-data-based application, because it allows to generate useful
business information.

o Veracity: refers to the correctness and accuracy of information.
Behind any information management practice lie the core doc-
trines of data quality, data governance, and metadata manage-
ment, along with considerations of privacy and legal concerns.

Some examples of potential big data sources are the Open Science
Data Cloud [8], the European Union Open Data Portal, open data from
the U.S. government, healthcare data, public datasets on Amazon
Web Services, etc. Social media [9] has become one of the most
representative and relevant data sources for big data. Social media
data are generated from a wide number of Internet applications and
Web sites, with some of the most popular being Facebook, Twitter,
LinkedIn, YouTube, Instagram, Google, Tumblr, Flickr, and WordPress.
The fast growth of these Web sites allow users to be connected
and has created a new generation of people (maybe a new kind of
society [10]) who are enthusiastic about interacting, sharing, and
collaborating using these sites [11]. This information has spread
to many different areas such as everyday life [12] (e-commerce,
e-business, e-tourism, hobbies, friendship, ...), education [13], health
[14], and daily work.

In this paper, we assume that social big data comes from join-
ing the efforts of the two previous domains: social media and big
data. Therefore, social big data will be based on the analysis of vast
amounts of data that could come from multiple distributed sources
but with a strong focus on social media. Hence, social big data
analysis [15,16] is inherently interdisciplinary and spans areas such
as data mining, machine learning, statistics, graph mining, informa-
tion retrieval, linguistics, natural language processing, the semantic
Web, ontologies, and big data computing, among others. Their appli-
cations can be extended to a wide number of domains such as health
and political trending and forecasting, hobbies, e-business, cyber-
crime, counterterrorism, time-evolving opinion mining, social net-
work analysis, and humanmachine interactions. The concept of social
big data can be defined as follows:

“Those processes and methods that are designed to provide sensitive
and relevant knowledge to any user or company from social media data
sources when data sources can be characterised by their different formats
and contents, their very large size, and the online or streamed generation
of information.”

The gathering, fusion, processing and analysing of the big social
media data from unstructured (or semi-structured) sources to extract
value knowledge is an extremely difficult task which has not been
completely solved. The classic methods, algorithms, frameworks and
tools for data management have became inadequate for processing
the vast amount of data. This issue has generated a large number
of open problems and challenges on social big data domain related
to different aspects as knowledge representation, data management,
data processing, data analysis, and data visualisation [17]. Some of
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Fig. 1. The conceptual map of Social BigData.

these challenges include accessing to very large quantities of unstruc-
tured data (management issues), determination of how much data is
enough for having a large quantity of high quality data (quality ver-
sus quantity), processing of data stream dynamically changing, or en-
suring the enough privacy (ownership and security), among others.
However, given the very large heterogeneous dataset from social me-
dia, one of the major challenges is to identify the valuable data and
how analyse them to discover useful knowledge improving decision
making of individual users and companies [18].

In order to analyse the social media data properly, the traditional
analytic techniques and methods (data analysis) require adapting
and integrating them to the new big data paradigms emerged for
massive data processing. Different big data frameworks such as
Apache Hadoop [19] and Spark [20] have been arising to allow the
efficient application of data mining methods and machine learning
algorithms in different domains. Based on these big data frameworks,
several libraries such as Mahout [21] and SparkMLib [22] have been
designed to develop new efficient versions of classical algorithms.
This paper is focused on review those new methodologies, frame-
works, and algorithms that are currently appearing under the big data
paradigm, and their applications to a wide number of domains such
as e-commerce, marketing, security, and healthcare.

Finally, summarising the concepts mentioned previously, Fig. 1
shows the conceptual representation of the three basic social big data
areas: social media as a natural source for data analysis; big data as a
parallel and massive processing paradigm; and data analysis as a set
of algorithms and methods used to extract and analyse knowledge.
The intersections between these clusters reflect the concept of mix-
ing those areas. For example, the intersection between big data and
data analysis shows some machine learning frameworks that have
been designed on top of big data technologies (Mahoot [21], MLBase
[23,24], or SparkMLib [22]). The intersection between data analysis
and social media represents the concept of current Web-based
applications that intensively use social media information, such as
applications related to marketing and e-health that are described in
Section 4. The intersection between big data and social media is re-
flected in some social media applications such as LinkedIn, Facebook,
and Youtube that are currently using big data technologies (Mon-
goDB, Cassandra, Hadoop, and so on) to develop their Web systems.
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Finally, the centre of this figure only represents the main goal of any
social big data application: knowledge extraction and exploitation.

The rest of the paper is structured as follows; Section 2 provides
an introduction to the basics on the methodologies, frameworks, and
software used to work with big data. Section 3 provides a description
of the current state of the art in the data mining and data analytic
techniques that are used in social big data. Section 4 describes a num-
ber of applications related to marketing, crime analysis, epidemic in-
telligence, and user experiences. Finally, Section 5 describes some of
the current problems and challenges in social big data; this section
also provides some conclusions about the recent achievements and
future trends in this interesting research area.

2. Methodologies for social big data

Currently, the exponential growth of social media has created seri-
ous problems for traditional data analysis algorithms and techniques
(such as data mining, statistics, machine learning, and so on) due to
their high computational complexity for large datasets. This type of
methods does not properly scale as the data size increases. For this
reason, the methodologies and frameworks behind the big data con-
cept are becoming very popular in a wide number of research and
industrial areas.

This section provides a short introduction to the methodol-
ogy based on the MapReduce paradigm and a description of the
most popular framework that implements this methodology, Apache
Hadoop. Afterwards Apache Spark is described as emerging big data
framework that improves the current performance of the Hadoop
framework. Finally, some implementations and tools for big data do-
main related to distributed data file systems, data analytics, and ma-
chine learning techniques are presented.

2.1. MapReduce and the big data processing problem

MapReduce [25,26] is presented as one of the most efficient big
data solutions. This programming paradigm and its related algo-
rithms [27], were developed to provide significant improvements in
large-scale data-intensive applications in clusters [28]. The program-
ming model implemented by MapReduce is based on the definition
of two basic elements: mappers and reducers. The idea behind this
programming model is to design map functions (or mappers) that are
used to generate a set of intermediate key/value pairs, after which

(K2, value)

(K1, value)

(01, “I thought I”) 1,2

| thought, |
thought of thinking
of thanking you

(02, "thought of thinking”) (of, 1)

(of, 1)
(03, "of thanking you”)

(you, 1)

Input Splitting Mapping

(thought, 1)

—
-

(thought, 1)

(thinking, 1)

(thanking, 1)

the reduce functions will merge (reduce can be used as a shuffling or
combining function) all of the intermediate values that are associated
with the same intermediate key. The key aspect of the MapReduce al-
gorithm is that if every map and reduce is independent of all other
ongoing maps and reduces, then the operations can be run in parallel
on different keys and lists of data.

Although three functions, Map(), Combining()/Shuffling(), and Re-
duce(), are the basic processes in any MapReduce approach, usually
they are decomposed as follows:

1. Prepare the input: The MapReduce system designates map pro-
cessors (or worker nodes), assigns the input key value K1 that each
processor would work on, and provides each processor with all of
the input data associated with that key value.

2. The Map() step: Each worker node applies the Map() function to
the local data and writes the output to a temporary storage space.
The Map() code is run exactly once for each K1 key value, gen-
erating output that is organised by key values K2. A master node
arranges it so that for redundant copies of input data only one is
processed.

3. The Shuffle() step: The map output is sent to the reduce proces-
sors, which assign the K2 key value that each processor should
work on, and provide that processor with all of the map-generated
data associated with that key value, such that all data belonging
to one key are located on the same worker node.

4. The Reduce() step: Worker nodes process each group of output
data (per key) in parallel, executing the user-provided Reduce()
code; each function is run exactly once for each K2 key value pro-
duced by the map step.

5. Produce the final output: The MapReduce system collects all of
the reduce outputs and sorts them by K2 to produce the final out-
come.

Fig. 2 shows the classical “word count problem” using the MapRe-
duce paradigm. As Fig. 2 shown, initially a process will split the data
into a subset of chunks that will later be processed by the mappers.
Once the key/values are generated by mappers, a shuffling process is
used to mix (combine) these key values (combining the same keys
in the same worker node). Finally, the reduce functions are used to
count the words that generate a common output as a result of the
algorithm. As a result of the execution or wrappers/reducers, the out-
put will generate a sorted list of word counts from the original text
input.

(K2, value) (K2, value)

—’[ (1,2)

(1, 2)

(thanking, 1) (thanking, 1)

1,2
of, 2
thanking, 1
thinking, 1
thought, 2
you, 1

(thinking, 1) (thinking, 1)

(thought, 2)

(thought, 1)
(thought, 1)

(you, 1)

Shuffling Final Result

Reducing

Fig. 2. The MapReduce processes for counting words in a text.
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Finally, and before the application of this paradigm, it is essential
to understand if the algorithms can be translated to mappers and re-
ducers or if the problem can be analysed using traditional strategies.
MapReduce provides an excellent technique to work with large sets
of data when the algorithm can work on small pieces of that dataset
in parallel, but if the algorithm cannot be mapped into this method-
ology, it may be “trying to use a sledgehammer to crack a nut”.

2.2. Apache Hadoop

Any MapReduce system (or framework) is based on a MapReduce
engine that allows for implementing the algorithms and distribut-
ing the parallel processes. Apache Hadoop [19] is an open-source
software framework written in Java for the distributed storage and
distributed processing of very large datasets using the MapReduce
paradigm. All of the modules in Hadoop have been designed taking
into account the assumption that hardware failures (of individual ma-
chines or of racks of machines) are commonplace and thus should be
automatically managed in the software by the framework. The core
of Apache Hadoop comprises a storage area, the Hadoop Distributed
File System (HDFS), and a processing area (MapReduce).

The HDFS (see Section 2.4.1) spreads multiple copies of the data
across different machines. This not only offers reliability without the
need for RAID-controlled disks but also allows for multiple locations
to run the mapping. If a machine with one copy of the data is busy
or offline, another machine can be used. A job scheduler (in Hadoop,
the JobTracker) keeps track of which MapReduce jobs are executing;
schedules individual maps; reduces intermediate merging operations
to specific machines; monitors the successes and failures of these in-
dividual tasks; and works to complete the entire batch job. The HDFS
and the job scheduler can be accessed by the processes and pro-
grams that need to read and write data and to submit and monitor
the MapReduce jobs. However, Hadoop presents a number of limita-
tions:

1. For maximum parallelism, you need the maps and reduces to
be stateless, to not depend on any data generated in the same
MapReduce job. You cannot control the order in which the maps
run or the reductions.

2. Hadoop is very inefficient (in both CPU time and power con-
sumed) if you are repeating similar searches repeatedly. A database
with an index will always be faster than running a MapReduce job
over un-indexed data. However, if that index needs to be regener-
ated whenever data are added, and data are being added continu-
ally, MapReduce jobs may have an edge.

3. In the Hadoop implementation, redtce operations do not take place
until all of the maps have been completed (or have failed and been
skipped). As a result, you do not receive any data back until the
entire mapping has finished.

4. There is a general assumption that the output of the reduce is
smaller than the input to the map. That is, you are taking a large
data source and generating smaller final values.

2.3. Apache Spark

Apache Spark [20] is an open-source cluster computing frame-
work that was originally developed in the AMPLab at University of
California, Berkeley. Spark had over 570 contributors in June 2015,
making it a very high-activity project in the Apache Software Founda-
tion and one of the most active big data open source projects. It pro-
vides high-level APIs in Java, Scala, Python, and R and an optimised
engine that supports general execution graphs. It also supports a rich
set of high-level tools including Spark SQL for SQL and structured data
processing, Spark MLIib for machine learning, GraphX for graph pro-
cessing, and Spark Streaming.

The Spark framework allows for reusing a working set of data
across multiple parallel operations. This includes many iterative ma-
chine learning algorithms as well as interactive data analysis tools.
Therefore, this framework supports these applications while retain-
ing the scalability and fault tolerance of MapReduce. To achieve these
goals, Spark introduces an abstraction called resilient distributed
datasets (RDDs). An RDD is a read-only collection of objects parti-
tioned across a set of machines that can be rebuilt if a partition is lost.
In contrast to Hadoops two-stage disk-based MapReduce paradigm
(mappers/reducers), Sparks in-memory primitives provide perfor-
mance up to 100 times faster for certain applications by allowing
user programs to load data into a clusters memory and to query it
repeatedly. One of the multiple interesting features of Spark is that
this framework is particularly well suited to machine learning algo-
rithms [29].

From a distributed computing perspective, Spark requires a cluster
manager and a distributed storage system. For cluster management,
Spark supports stand-alone (native Spark cluster), Hadoop YARN, and
Apache Mesos. For distributed storage, Spark can interface with a
wide variety, including the Hadoop Distributed File System, Apache
Cassandra, OpenStack Swift, and Amazon S3. Spark also supports a
pseudo-distributed local mode that is usually used only for develop-
ment or testing purposes, when distributed storage is not required
and the local file system can be used instead; in this scenario, Spark
is running on a single machine with one executor per CPU core.

2.4. Other MapReduce implementations and software

A list related to big data implementations and MapReduce-based
applications was generated by Mostosi [30]. Although the author
finds that “It is [the list] still incomplete and always will be”, his “Big-
Data Ecosystem Table” [31] contains more than 600 references re-
lated to different big data technologies, frameworks, and applications
and, to the best of this authors knowledge, is one of the best (and
more exhaustive) lists related to available big data technologies. This
list comprises 33 different topics related to big data, and a selection
of those technologies and applications were chosen. Those topics are
related to: distributed programming, distributed files systems, a docu-
ment data model, a key-value data model, a graph data model, machine
learning, applications, business intelligence, and data analysis. This se-
lection attempts to reflect some of the recent popular frameworks
and software implementations that are commonly used to develop
efficient MapReduce-based systems and applications.

2.4.1. Distributed programming & distributed filesystems

o Apache Pig. Pig provides an engine for executing data flows in
parallel on Hadoop. It includes a language, Pig Latin, for express-
ing these data flows. Pig Latin includes operators for many of the
traditional data operations (join, sort, filter, etc.), as well as the
ability for users to develop their own functions for reading, pro-
cessing, and writing data.

o Apache Storm. Storm is a complex event processor and dis-
tributed computation framework written basically in the Clojure
programming language [32]. It is a distributed real-time compu-
tation system for rapidly processing large streams of data. Storm
is an architecture based on a master-workers paradigm, so that a
Storm cluster mainly consists of master and worker nodes, with
coordination done by Zookeeper [33].

o Stratosphere [34]. Stratosphere is a general-purpose cluster com-
puting framework. It is compatible with the Hadoop ecosystem:,
accessing data stored in the HDFS and running with Hadoops new
cluster manager YARN. The common input formats of Hadoop are
supported as well. Stratosphere does not use Hadoops MapReduce
implementation; it is a completely new system that brings its own
runtime. The new runtime allows for defining more advanced op-
erations that include more transformations than only map and
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reduce. Additionally, Stratosphere allows for expressing analysis
jobs using advanced data flow graphs, which are able to resemble
common data analysis task more naturally.

o Apache HDFS. The most extended and popular distributed file
system for MapReduce frameworks and applications is the
Hadoop Distributed File System. The HDFS offers a way to store
large files across multiple machines. Hadoop and HDFS were de-
rived from the Google File System (GFS) [35].

2.4.2. Document data model & graph data model

o Apache Cassandra. Cassandra is a recent open source fork of a
stand-alone distributed non-SQL DBMS system that was initially
coded by Facebook, derived from what was known of the original
Google BigTable [36] and Google File System designs [35]. Cas-
sandra uses a system inspired by Amazons Dynamo for storing
data, and MapReduce can retrieve data from Cassandra. Cassan-
dra can run without the HDFS or on top of it (the DataStax fork of
Cassandra).

o Apache Giraph. Giraph is an iterative graph processing system
built for high scalability. It is currently used at Facebook to analyse
the social graph formed by users and their connections. Giraph
was originated as the open-source counterpart to Pregel [37], the
graph processing framework developed at Google (see Section 3.1
for a further description).

MongoDB. MongoDB is an open-source document-oriented
database system and is part of the NoSQL family of database sys-
tems [38]. It provides high performance, high availability, and au-
tomatic scaling. Instead of storing data in tables as is done in
a classical relational database, MongoDB stores structured data
as JSON-like documents, which are data structures composed of
fields and value pairs. Its index system supports faster queries and
can include keys from embedded documents and arrays. More-
over, this database allows users to distribute data across a cluster
of machines.

2.4.3. Machine learning

o Apache Mahout [21]. The Mahout(TM) Machine Learning (ML) li-
brary is an Apache(TM) project whose main goal is to build scal-
able libraries that contain the implementation of a number of the
conventional ML algorithms (dimensionality reduction, classifi-
cation, clustering, and topic models, among others). In addition,
this library includes implementations for a set of recommender
systems (user-based and item-based strategies). The first ver-
sions of Mahout implemented the algorithms built on the Hadoop
framework, but recent versions include many new implemen-
tations built on the Mahout-Samsara environment, which runs
on Spark and H20. The new Spark-item similarity implementa-
tions enable the next generation of co-occurrence recommenders
that can use entire user click streams and contexts in making
recommendations.

Spark MLIib [22]. MLIib is Sparks scalable machine learning li-
brary, which consists of common learning algorithms and utilities,
including classification, regression, clustering, collaborative filter-
ing, and dimensionality reduction, as well as underlying optimiza-
tion primitives. It supports writing applications in Java, Scala, or
Python and can run on any Hadoop2/YARN cluster with no pre-
installation. The first version of MLIib was developed at UC Berke-
ley by 11 contributors, and it provided a limited set of standard
machine learning methods. However, MLIib is currently experi-
encing dramatic growth, and it has over 140 contributors from
over 50 organisations.

MLBase [23]. The MLbase platform consists of three layers: ML
Optimizer, MLIib, and MLI. ML Optimizer (currently under develop-
ment) aims to automate the task of ML pipeline construction. The
optimizer solves a search problem over the feature extractors and

ML algorithms included in MLI and MLIib. MLI [24] is an experi-
mental API for feature extraction and algorithm development that
introduces high-level ML programming abstractions. A prototype
of MLI has been implemented against Spark and serves as a test
bed for MLIib. Finally, MLIib is Apache Sparks distributed ML li-
brary. MLIib was initially developed as part of the MLbase project,
and the library is currently supported by the Spark community.

2.4.4. Applications & business intelligence & data analysis

o Apache Nutch. Nutch is a highly extensible and scalable open
source web crawler software project, specifically, a search engine
based on Lucene (a Web crawler is an Internet bot that systemat-
ically browses the World Wide Web, usually for Web indexing). It
can process various document types (plain text, XML, OpenDocu-
ment, Word, Excel, Powerpoint, PDF, RTF, MP3) that are all parsed
by the Tika plugin. Currently, the project has two versions. Nutch
1.x is relying on Apache Hadoop data structures, which are ex-
cellent for batch processing. Nutch 2.x differs in the data storage,
which is performed using Apache Gora to manage persistent ob-
ject mappings. This allows for incorporating a flexible model/stack
to store everything (fetch time, status, content, parsed text, out-
links, inlinks, etc.) into a number of NoSQL storage solutions.
Apache Zeppelin. Zeppelin is a Web-based notebook that enables
interactive data analytics; it is an open source data analysis en-
vironment that runs on top of Apache Spark. Current languages
included in the Zeppelin interpreter are Scala, Python, SparkSQL,
Hive, Markdown, and Shell. Zeppelin can dynamically create some
input forms in your notebook and provides some basic charts to
show the results, and the notebook URL can be shared among
collaborators.
Pentaho. Pentaho is an open source data integration (Kettle) tool
that delivers powerful extraction, transformation, and loading
capabilities using a groundbreaking, metadata-driven approach.
It also provides analytics, reporting, visualisation, and a predic-
tive analytics framework that is directly designed to work with
Hadoop nodes. It provides data integration and analytic platforms
based on Hadoop in which datasets can be streamed, blended,
and then automatically published into one of the popular analytic
databases.
SparkR. There is an important number of R-based applications for
MapReduce and other big data applications. R [39] is a popular
and extremely powerful programming language for statistics and
data analysis. SparkR provides an R frontend for Spark. It allows
users to interactively run jobs from the R shell on a cluster, auto-
matically serializes the necessary variables to execute a function
on the cluster, and also allows for easy use of existing R packages.

3. Social data analytic methods and algorithms

Social big data analytic can be seen as the set of algorithms and
methods used to extract relevant knowledge from social media data
sources that could provide heterogeneous contents, with very large
size, and constantly changing (stream or online data). This is inher-
ently interdisciplinary and spans areas such as data mining, machine
learning, statistics, graph mining, information retrieval, and natural
language among others. This section provides a description of the
basic methods and algorithms related to network analytics, commu-
nity detection, text analysis, information diffusion, and information
fusion, which are the areas currently used to analyse and process in-
formation from social-based sources.

3.1. Network analytics
Today, society lives in a connected world in which communica-

tion networks are intertwined with daily life. For example, social
networks are one of the most important sources of social big data;
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specifically, Twitter generates over 400 million tweets every day [40].
In social networks, individuals interact with one another and provide
information on their preferences and relationships, and these net-
works have become important tools for collective intelligence extrac-
tion. These connected networks can be represented using graphs, and
network analytic methods [41] can be applied to them for extracting
useful knowledge.

Graphs are structures formed by a set of vertices (also called
nodes) and a set of edges, which are connections between pairs of
vertices. The information extracted from a social network can be
easily represented as a graph in which the vertices or nodes rep-
resent the users and the edges represent the relationships among
them (e.g., a re-tweet of a message or a favourite mark in Twitter). A
number of network metrics can be used to perform social analysis of
these networks. Usually, the importance, or influence, in a social net-
work is analysed through centrality measures. These measures have
high computational complexity in large-scale networks. To solve this
problem, focusing on a large-scale graph analysis, a second genera-
tion of frameworks based on the MapReduce paradigm has appeared,
including Hama, Giraph (based on Pregel), and GraphLab among
others [42].

Pregel [37] is a graph-parallel system based on the Bulk Syn-
chronous Parallel model (BSP) [43]. A BSP abstract computer can be
interpreted as a set of processors that can follow different threads
of computation in which each processor is equipped with fast local
memory and interconnected by a communication network. Accord-
ing to this, the platform based on this model comprises three major
components:

o Components capable of processing and/or local memory transac-
tions (i.e., processors).

o A network that routes messages between pairs of these compo-
nents.

o A hardware facility that allows for the synchronisation of all or a
subset of components.

Taking into account this model, a BSP algorithm is a sequence of
global supersteps that consists of three components:

1. Concurrent computation: Every participating processor may per-
form local asynchronous computations.

2. Communication: The processes exchange data from one processor
to another, facilitating remote data storage capabilities.

3. Barrier synchronisation: When a process reaches this point (the
barrier), it waits until all other processes have reached the same
barrier.

Hama [44] and Giraph are two distributed graph processing
frameworks on Hadoop that implement Pregel. The main difference
between the two frameworks is the matrix computation using the
MapReduce paradigm. Apache Giraph is an iterative graph process-
ing system in which the input is a graph composed of vertices and
directed edges. Computation proceeds as a sequence of iterations (su-
persteps). Initially, every vertex is active, and for each superstep, ev-
ery active vertex invokes the “Compute Method” that will implement
the graph algorithm that will be executed. This means that the algo-
rithms implemented using Giraph are vertex oriented. Apache Hama
does not only allow users to work with Pregel-like graph applica-
tions. This computing engine can also be used to perform compute-
intensive general scientific applications and machine learning algo-
rithms. Moreover, it currently supports YARN, which is the resource
management technology that lets multiple computing frameworks
run on the same Hadoop cluster using the same underlying stor-
age. Therefore, the same data could be analysed using MapReduce
or Spark.

In contrast, GraphLab is based on a different concept. Whereas
Pregel is a one-vertex-centric model, this framework uses vertex-
to-node mapping in which each vertex can access the state of

adjacent vertices. In Pregel, the interval between two supersteps is
defined by the run time of the vertex with the largest neighbour-
hood. The GraphLab approach improves this splitting of vertices with
large neighbourhoods across different machines and synchronises
them.

Finally, Elser and Montresor [42] present a study of these data
frameworks and their application to graph algorithms. The k-core de-
composition algorithm is adapted to each framework. The goal of this
algorithm is to compute the centrality of each node in a given graph.
The results obtained confirm the improvement achieved in terms of
execution time for these frameworks based on Hadoop. However,
from a programming paradigm point of view, the authors recommend
Pregel-inspired frameworks (a vertex-centric framework), which is
the better fit for graph-related problems.

3.2. Community detection algorithms

The community detection problem in complex networks has been
the subject of many studies in the field of data mining and social net-
work analysis. The goal of the community detection problem is simi-
lar to the idea of graph partitioning in graph theory [45,46]. A cluster
in a graph can be easily mapped into a community. Despite the ambi-
guity of the community definition, numerous techniques have been
used for detecting communities. Random walks, spectral clustering,
modularity maximization, and statistical mechanics have all been ap-
plied to detecting communities [46]. These algorithms are typically
based on the topology information from the graph or network. Re-
lated to graph connectivity, each cluster should be connected; that
is, there should be multiple paths that connect each pair of vertices
within the cluster. It is generally accepted that a subset of vertices
forms a good cluster if the induced sub-graph is dense and there are
few connections from the included vertices to the rest of the graph
[47]. Considering both connectivity and density, a possible definition
of a graph cluster could be a connected component or a maximal
clique [48]. This is a sub-graph into which no vertex can be added
without losing the clique property.

One of the most well-known algorithms for community detection
was proposed by Girvan and Newman [49]. This method uses a new
similarity measure called “edge betweenness” based on the number
of the shortest paths between all vertex pairs. The proposed algo-
rithm is based on identifying the edges that lie between communities
and their successive removal, achieving the isolation of the commu-
nities. The main disadvantage of this algorithm is its high computa-
tional complexity with very large networks.

Modularity is the most used and best known quality measure for
graph clustering techniques, but its computation is an NP-complete
problem. However, there are currently a number of algorithms based
on good approximations of modularity that are able to detect com-
munities in a reasonable time. The first greedy technique to maxi-
mize modularity was a method proposed by Newman [50]. This was
an agglomerative hierarchical clustering algorithm in which groups
of vertices were successively joined to form larger communities such
that modularity increased after the merging. The update of the matrix
in the Newman algorithm involved a large number of useless opera-
tions owing to the sparseness of the adjacency matrix. However, the
algorithm was improved by Clauset et al. [51], who used the matrix
of modularity variations to arrange for the algorithm to perform more
efficiently.

Despite the improvements to and modifications of the accuracy
of these greedy algorithms, they have poor performance when they
are compared against other techniques. For this reason, Newman re-
formulated the modularity measure in terms of eigenvectors by re-
placing the Laplacian matrix with the modularity matrix [52], called
the spectral optimization of modularity. This improvement must also
be applied in order to improve the results of other optimization
techniques [53,54].
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Random walks can also be useful for finding communities. If a
graph has a strong community structure, a random walker spends a
long time inside a community because of the high density of internal
edges and the consequent number of paths that could be followed.
Zhou and Lipowsky [55], based on the fact that walkers move prefer-
entially towards vertices that share a large number of neighbours, de-
fined a proximity index that indicates how close a pair of vertices is to
all other vertices. Communities are detected with a procedure called
NetWalk, which is an agglomerative hierarchical clustering method
by which the similarity between vertices is expressed by their
proximity.

A number of these techniques are focused on finding disjointed
communities. The network is partitioned into dense regions in which
nodes have more connections to each other than to the rest of the
network, but it is interesting that in some domains, a vertex could
belong to several clusters. For instance, it is well-known that peo-
ple in a social network for natural memberships in multiple com-
munities. Therefore, the overlap is a significant feature of many real-
world networks. To solve this problem, fuzzy clustering algorithms
applied to graphs [56] and overlapping approaches [57] have been
proposed.

Xie et al. [58] reviewed the state of the art in overlapping com-
munity detection algorithms. This work noticed that for low overlap-
ping density networks, SLPA, OSLOM, Game, and COPRA offer better
performance. For networks with high overlapping density and high
overlapping diversity, both SLPA and Game provide relatively stable
performance. However, test results also suggested that the detection
in such networks is still not yet fully resolved . A common feature that
is observed by various algorithms in real-world networks is the rel-
atively small fraction of overlapping nodes (typically less than 30%),
each of which belongs to only 2 or 3 communities.

3.3. Text analytics

A significant portion of the unstructured content collected from
social media is text. Text mining techniques can be applied for auto-
matic organization, navigation, retrieval, and summary of huge vol-
umes of text documents [59-61]. This concept covers a number of
topics and algorithms for text analysis including natural language
processing (NLP), information retrieval, data mining, and machine
learning [62].

Information extraction techniques attempt to extract entities and
their relationships from texts, allowing for the inference of new
meaningful knowledge. These kinds of techniques are the starting
point for a number of text mining algorithms. A usual model for
representing the content of documents or text is the vector space
model. In this model, each document is represented by a vector of
frequencies of remaining terms within the document [60]. The term
frequency (TF) is a function that relates the number of occurrences of
the particular word in the document divided by the number of words
in the entire document. Another function that is currently used is
the inverse document frequency (IDF); typically, documents are rep-
resented as TF-IDF feature vectors. Using this data representation, a
document represents a data point in n-dimensional space where n is
the size of the corpus vocabulary.

Text data tend to be sparse and high dimensional. A text docu-
ment corpus can be represented as a large sparse TF-IDF matrix, and
applying dimensionality reduction methods to represent the data in
compressed format [63] can be very useful. Latent semantic indexing
[64] is an automatic indexing method that projects both documents
and terms into a low-dimensional space that attempts to represent
the semantic concepts in the document. This method is based on the
singular value decomposition of the term-document matrix, which
constructs a low-ranking approximation of the original matrix while
preserving the similarity between the documents. Another family of
dimension reduction techniques is based on probabilistic topic mod-

els such as latent Dirichlet allocation (LDA) [65]. This technique pro-
vides the mechanism for identifying patterns of term co-occurrence
and using those patterns to identify coherent topics. Standard LDA
implementations of the algorithm read the documents of the training
corpus numerous times and in a serial way. However, new, efficient,
parallel implementations of this algorithm have appeared [66] in at-
tempts to improve its efficiency.

Unsupervised machine learning methods can be applied to any
text data without the need for a previous manual process. Specifi-
cally, clustering techniques are widely studied in this domain to find
hidden information or patterns in text datasets. These techniques
can automatically organise a document corpus into clusters or sim-
ilar groups based on a blind search in an unlabelled data collection,
grouping the data with similar properties into clusters without hu-
man supervision. Generally, document clustering methods can be
mainly categorized into two types [67]: partitioning algorithms that
divide a document corpus into a given number of disjoint clusters
that are optimal in terms of some predefined criteria functions [68]
and hierarchical algorithms that group the data points into a hierar-
chical tree structure or a dendrogram [69]. Both types of clustering al-
gorithms have strengths and weaknesses depending on the structure
and characteristics of the dataset used. In Zhao and Karypis [70], a
comparative assessment of different clustering algorithms (partition-
ing and hierarchical) was performed using different similarity mea-
sures on high-dimensional text data. The study showed that parti-
tioning algorithms perform better and can also be used to produce
hierarchies of higher quality than those returned by the hierarchical
ones.

In contrast, the classification problem is one of the main topics
in the supervised machine learning literature. Nearly all of the well-
known techniques for classification, such as decision trees, associa-
tion rules, Bayes methods, nearest neighbour classifiers, SVM classi-
fiers, and neural networks, have been extended for automated text
categorisation [71]. Sentiment classification has been studied exten-
sively in the area of opinion mining research, and this problem can
be formulated as a classification problem with three classes, positive,
negative and neutral. Therefore, most of the existing techniques de-
signed for this purpose are based on classifiers [72].

However, the emergence of social networks has created massive
and continuous streams of text data. Therefore, new challenges have
been arising in adapting the classic machine learning methods, be-
cause of the need to process these data in the context of a one-pass
constraint [73]. This means that it is necessary to perform data min-
ing tasks online and only one time as the data come in. For exam-
ple, the online spherical k-means algorithm [74] is a segment-wise
approach that was proposed for streaming text clustering. This tech-
nique splits the incoming text stream into small segments that can
be processed effectively in memory. Then, a set of k-means iterations
is applied to each segment in order to cluster them. Moreover, in or-
der to consider less important old documents during the clustering
process, a decay factor is included.

3.4. Information diffusion models and methods

One of the most important roles of social media is to spread infor-
mation to social links. With the large amount of data and the complex
structures of social networks, it has been even more difficult to under-
stand how (and why) information is spread by social reactions (e.g.,
retweeting in Twitter and like in Facebook). It can be applied to var-
ious applications, e.g., viral marketing, popular topic detection, and
virus prevention [75].

As a result, many studies have been proposed for modelling the
information diffusion patterns on social networks. The characteris-
tics of the diffusion models are (i) the topological structure of the
network (a sub-graph composed of a set of users to whom the infor-
mation has been spread) and (ii) temporal dynamics (the evolution
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of the number of users whom the information has reached over time)
[76].

According to the analytics, these diffusion models can be catego-
rized into explanatory and predictive approaches [77].

o Explanatory models: The aim of these models is to discover the
hidden spreading cascades once the activation sequences are col-
lected. These models can build a path that can help users to easily
understand how the information has been diffused. The NETINT
method [78] has applied sub-modular, function-based iterative
optimisation to discover the spreading cascade (path) that max-
imises the likelihood of the collected dataset. In particular, for
working with missing data, a k-tree model [79] has been proposed
to estimate the complete activation sequences.

Predictive models: These are based on learning processes with the
observed diffusion patterns. Depending on the previous diffu-
sion patterns, there are two main categories of predictive mod-
els: (i) structure-based models (graph-based approaches) and (ii)
content-analysis-based models (non-graph-based approaches).

Moreover, there are more existing approaches to understanding
information diffusion patterns. The projected greedy approach for
non-sub-modular problems [80] was recently proposed to populate
the useful seeds in social networks. This approach can identify the
partial optimisation for understanding the information diffusion. Ad-
ditionally, an evolutionary dynamics model was presented in [81, 82]
that attempted to understand the temporal dynamics of information
diffusion over time.

One of the relevant topics for analysing information diffusion pat-
terns and models is the concept of time and how it can be represented
and managed. One of the popular approaches is based on time series.
Any time series can be defined as a chronological collection of ob-
servations or events. The main characteristics of this type of data are
large size, high dimensionality, and continuous change. In the con-
text of data mining, the main problem is how to represent the data.
An effective mechanism for compressing the vast amount of time se-
ries data is needed in the context of information diffusion. Based on
this representation, different data mining techniques can be applied
such as pattern discovery, classification, rule discovery, and summari-
sation [83]. In Lin et al. [84], a new symbolic representation of time
series is proposed that allows for a dimensionality/numerosity reduc-
tion. This representation is tested using different classic data mining
tasks such as clustering, classification, query by content, and anomaly
detection.

Based on the mathematical models mentioned above, we need to
compare a number of various applications that can support users in
many different domains. One of the most promising applications is
detecting meaningful social events and popular topics in society. Such
meaningful events and topics can be discovered by well-known text
processing schemes (e.g., TF-IDF) and simple statistical approaches
(e.g., LDA, Gibbs sampling, and the TSTE method [85]). In particular,
not only the time domain but also the frequency domain have been
exploited to identify the most frequent events [86].

3.5. Information fusion for social big data

The social big data from various sources needs to be fused for pro-
viding users with better services. These fusion can be done in dif-
ferent ways and affect to different technologies, methods and even
research areas. Two of these possible areas are Ontologies and Social
Networks, next how previous areas could benefit from information
fusion in social big data are briefly described:

» Ontology-based fusion. Semantic heterogeneity is an important
issue on information fusion. Social networks have inherently dif-
ferent semantics from other types of network. Such semantic het-
erogeneity includes not only linguistic differences (e.g., between

‘reference’ and ‘bibliography’) but also mismatching between con-
ceptual structures. To deal with these problems, in [87] ontolo-
gies are exploited from multiple social networks, and more impor-
tantly, semantic correspondences obtained by ontology matching
methods.

More practically, semantic meshup applications have been illus-
trated. To remedy the data integration issues of the traditional
web mashups, the semantic technologies uses the linked open
data (LOD) based on RDF data model, as the unified data model
for combining, aggregating, and transforming data from hetero-
geneous data resources to build linked data mashups [88].

Social network integration. Next issue is how to integrate the
distributed social networks. As many kinds of social network-
ing services have been developed, users are joining multiple ser-
vices for social interactions with other users and collecting a large
amount of information (e.g., statuses on Facebook and tweets on
Twitter). An interesting framework has been proposed for a social
identity matching (SIM) method across these multiple SNS [89].
It means that the proposed approach can protect user privacy, be-
cause only the public information (e.g., username and the social
relationships of the users) is employed to find the best matches
between social identities. Particularly, cloud-based platform has
been applied to build software infrastructure where the social
network information can be shared and exchanged [90].

4. Social-based applications

The social big data analysis can be applied to social media data
sources for discovering relevant knowledge that can be used to im-
prove the decision making of individual users and companies [18].
In this context, business intelligence can be defined as those tech-
niques, systems, methodologies, and applications that analyse crit-
ical business data to help an enterprise better understand its busi-
ness and market and to support business decisions [91]. This field
includes methodologies that can be applied to different areas such as
e-commerce, marketing, security, and healthcare [18]; more recent
methodologies have been applied to treat social big data. This section
provides short descriptions of some applications of these methodolo-
gies in domains that intensively use social big data sources for busi-
ness intelligence.

4.1. Marketing

Marketing researchers believe that big social media analytics and
cloud computing offer a unique opportunity for businesses to ob-
tain opinions from a vast number of customers, improving tradi-
tional strategies. A significant market transformation has been ac-
complished by leading e-commerce enterprises such Amazon and
eBay through their innovative and highly scalable e-commerce plat-
forms and recommender systems.

Social network analysis extracts user intelligence and can provide
firms with the opportunity for generating more targeted advertising
and marketing campaigns. Maurer and Wiegmann [92] show an anal-
ysis of advertising effectiveness on social networks. In particular, they
carried out a case study using Facebook to determine users percep-
tions regarding Facebook ads. The authors found that most of the par-
ticipants perceived the ads on Facebook as annoying or not helpful
for their purchase decisions. However, Trattner and Kappe [93] show
how ads placed on users social streams that have been generated by
the Facebook tools and applications can increase the number of visi-
tors and the profit and ROI of a Web-based platform. In addition, the
authors present an analysis of real-time measures to detect the most
valuable users on Facebook.

A study of microblogging (Twitter) utilization as an eWOM (elec-
tronic word-of-mouth) advertising mechanism is carried out in
Jansen et al. [94]. This work analyses the range, frequency, timing, and
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Table 1
Basic features related to social big data applications in marketing area.

Authors Ref. num. Summary Methods

Trattner and Kappe [93] Targeted advertising on Facebook Real-time measures to detect the most valuable users

Jansen et al. [94] Twitter as eWOM advertising mechanism Sentiment analysis

Asur et al. [95] Using Twitter to forecast box-office revenues for movies Topics detection, sentiment analysis

Ma et al. [96] Viral marketing in social networks Social network analysis, information diffusion models

content of tweets in various corporate accounts. The results obtained
show that 19% of microblogs mention a brand. Of the branding mi-
croblogs, nearly 20% contained some expression of brand sentiments.
Therefore, the authors conclude that microblogging reports what cus-
tomers really feel about the brand and its competitors in real time,
and it is a potential advantage to explore it as part of companies over-
all marketing strategies. Customers brand perceptions and purchas-
ing decisions are increasingly influenced by social media services,
and these offer new opportunities to build brand relationships with
potential customers. Another approach that uses Twitter data is pre-
sented in Asur et al. [95] to forecast box-office revenues for movies.
The authors show how a simple model built from the rate at which
tweets are created about particular topics can outperform market-
based predictors. Moreover, the sentiment extraction from Twitter is
used to improve the forecasting power of social media.

Because of the exponential growth use of social networks, re-
searchers are actively attempting to model the dynamics of viral mar-
keting based on the information diffusion process. Ma et al. [96]
proposed modelling social network marketing using heat diffusion
processes. Heat diffusion is a physical phenomenon related to heat,
which always flows from a position with higher temperature to a po-
sition with lower temperature. The authors present three diffusion
models along with three algorithms for selecting the best individuals
to receive marketing samples. These models can diffuse both positive
and negative comments on products or brands in order to simulate
the real opinions within social networks. Moreover, the authors com-
plexity analysis shows that the model is also scalable to large social
networks. Table 1 shows a brief summary of the previously described
applications, including the basic functionalities for each and their ba-
sic methods.

4.2. Crime analysis

Criminals tend to have repetitive pattern behaviours, and these
behaviours are dependent upon situational factors. That is, crime will
be concentrated in environments with features that facilitate crim-
inal activities [97]. The purpose of crime data analysis is to identify
these crime patterns, allowing for detecting and discovering crimes
and their relationships with criminals. The knowledge extracted from
applying data mining techniques can be very useful in supporting law
enforcement agencies.

Communication between citizens and government agencies
is mostly through telephones, face-to-face meetings, email, and
other digital forms. Most of these communications are saved or
transformed into written text and then archived in a digital format,
which has led to opportunities for automatic text analysis using NLP
techniques to improve the effectiveness of law enforcement [98]. A
decision support system that combines the use of NLP techniques,
similarity measures, and classification approaches is proposed by
Ku and Leroy [99] to automate and facilitate crime analysis. Fil-
tering reports and identifying those that are related to the same
or similar crimes can provide useful information to analyse crime
trends, which allows for apprehending suspects and improving crime
prevention.

Traditional crime data analysis techniques are typically designed
to handle one particular type of dataset and often overlook geospa-
tial distribution. Geographic knowledge discovery can be used to

discover patterns of criminal behaviour that may help in detecting
where, when, and why particular crimes are likely to occur. Based on
this concept, Phillips and lee [100] present a crime data analysis tech-
nique that allows for discovering co-distribution patterns between
large, aggregated and heterogeneous datasets. In this approach, ag-
gregated datasets are modelled as graphs that store the geospatial
distribution of crime within given regions, and then these graphs are
used to discover datasets that show similar geospatial distribution
characteristics. The experimental results obtained in this work show
that it is possible to discover geospatial co-distribution relationships
among crime incidents and socio-economic, socio-demographic and
spatial features.

Another analytical technique that is now in high use by law en-
forcement agencies to visually identify where crime tends to be high-
est is the hotspot mapping. This technique is used to predict where
crime may happen, using data from the past to inform future ac-
tions. Each crime event is represented as a point, allowing for the
geographic distribution analysis of these points. A number of map-
ping techniques can be used to identify crime hotspots, such as: point
mapping, thematic mapping of geographic areas, spatial ellipses, grid
thematic mapping, and kernel density estimation (KDE), among oth-
ers. Chainey et al. [101] conducted a comparative assessment of
these techniques, and the results obtained showed that KDE was the
technique that consistently outperformed the others. Moreover, the
authors offered a benchmark to compare with the results of other
techniques and other crime types, including comparisons between
advanced spatial analysis techniques and prediction mapping meth-
ods. Another novel approach using spatio-temporally tagged tweets
for crime prediction is presented by Gerber [102]. This work shows
the use of Twitter, applying a linguistic analysis and statistical topic
modelling to automatically identify discussion topics across a city in
the United States. The experimental results showed that adding Twit-
ter data improved crime prediction performance versus a standard
approach based on KDE.

Finally, the use of data mining in fraud detection is very popular,
and there are numerous studies on this area. ATM phone scams
are one well-known type of fraud. Kirkos et al. [103] analysed the
effectiveness of data mining classification techniques (decision trees,
neural networks and Bayesian belief networks) for identifying fraud-
ulent financial statements, and the experimental results concluded
that Bayesian belief networks provided higher accuracy for fraud
classification. Another approach to detecting fraud in real-time credit
card transactions was presented by Quah and Sriganesh [104]. The
system these authors proposed uses a self-organization map to filter
and analyse customer behaviour to detect fraud. The main idea is
to detect the patterns of the legal cardholder and of the fraudulent
transactions through neural network learning and then to develop
rules for these two different behaviours. One typical fraud in this area
is the ATM phone scams that attempts to transfer a victims money
into fraudulent accounts. In order to identify the signs of fraudulent
accounts and the patterns of fraudulent transactions, Li et al. [105] ap-
plied Bayesian classification and association rules. Detection rules are
developed based on the identified signs and applied to the design of a
fraudulent account detection system. Table 2 shows a brief summary
of all of the applications that were previously mentioned, providing
a description of the basic functionalities of each and their main
methods.

http://dx.doi.org/10.1016/j.inffus.2015.08.005

Please cite this article as: G. Bello-Orgaz et al., Social big data: Recent achievements and new challenges, Information Fusion (2015),



http://dx.doi.org/10.1016/j.inffus.2015.08.005

mpff_“é( Downloaded from http://iranpaper.ir

2\transteam

http://www.etransteam.com
Cuej il Ceie @ S

JID: INFFUS [m5G;September 3, 2L __, _dklnamisinsn
10 G. Bello-Orgaz et al. / Information Fusion 000 (2015) 1-15
Table 2
Basic features related to social big data applications in crime analysis area.
Authors Ref. num. Summary Methods
Phillips and Lee [100] Decision support system (DSS) to analyse crime trends allowing to catch suspects NLP, Similarity measures, classification
Ku and Leroy [99] Technique to discover geospatial co-distribution relations among crime incidents Network analysis
Chainey et al. [101] Comparative assessment of mapping techniques to predict where crimes may Spatial analysis, mapping methods
happen
Gerber [102] Identify discussion topics across a city in the United States to predict crimes Linguistic analysis, statistical topic modelling
Kirkos et al. [103] Identification of fraudulent financial statements Classification (decision trees, neural networks
and Bayesian belief networks)
Quah and Sriganesh [104] Detect fraud detection in real-time credit card transactions Neural network learning, association rules
Lietal. [105] Identify the signs of fraudulent accounts and the patterns of fraudulent Bayesian classification, association rules

transactions

4.3. Epidemic intelligence

Epidemic intelligence can be defined as the early identification,
assessment, and verification of potential public health risks [106] and
the timely dissemination of the appropriate alerts. This discipline
includes surveillance techniques for the automated and continuous
analysis of unstructured free text or media information available on
the Web from social networks, blogs, digital news media, and official
sources.

Text mining techniques have been applied to biomedical text cor-
pora for named entity recognition, text classification, terminology ex-
traction, and relationship extraction [107]. These methods are human
language processing algorithms that aim to convert unstructured tex-
tual data from large-scale collections to a specific format, filtering
them according to need. They can be used to detect words related
to diseases or their symptoms in published texts [108]. However, this
can be difficult because the same word can refer to different things
depending upon context. Furthermore, a specific disease can have
multiple associated names and symptoms, which increases the com-
plexity of the problem. Ontologies can help to automate human un-
derstanding of key concepts and the relationships between them, and
they allow for achieving a certain level of filtering accuracy. In the
health domain, it is necessary to identify and link term classes such
as diseases, symptoms, and species in order to detect the potential
focus of disease outbreaks. Currently, there are a number of available
biomedical ontologies that contain all of the necessary terms. For ex-
ample, the BioCaster ontology [109] is based on the OWL Semantic
Web language, and it was designed to support automated reasoning
across terms in 12 languages.

The increasing popularity and use of microblogging services such
as Twitter are recently a new valuable data source for Web-based
surveillance because of their message volume and frequency. Twitter
users may post about an illness, and their relationships in the net-
work can give us information about whom they could be in contact
with. Furthermore, user posts retrieved from the public Twitter API
can come with GPS-based location tags, which can be used to locate
the potential centre of disease outbreaks. A number of works have al-
ready appeared that show the potential of Twitter messages to track
and predict outbreaks. A document classifier to identify relevant mes-
sages was presented in Culotta [110]. In this work, Twitter messages
related to the flu were gathered, and then a number of classifica-
tion systems based on different regression models to correlate these
messages with CDC statistics were compared; the study found that
the best model had a correlation of 0.78 (simple model regression).
Aramaki [111] presented a comparative study of various machine-
learning methods to classify tweets related to influenza into two cate-
gories: positive and negative. Their experimental results showed that
the SVM model that used polynomial kernels achieved the highest
accuracy (FMeasure of 0.756) and the lowest training time.

Well-known regression models were evaluated on their ability to
assess disease outbreaks from tweets in Bodnar and Salathé [112].
Regression methods such as linear, multivariable, and SVM were

applied to the raw count of tweets that contained at least one of the
keywords related to a specific disease, in this case "flu”. The models
also validated that even using irrelevant tweets and randomly gener-
ated datasets, regression methods were able to assess disease levels
comparatively well.

A new unsupervised machine learning approach to detect public
health events was proposed in Fisichella et al. [113] that can comple-
ment existing systems because it allows for identifying public health
events even if no matching keywords or linguistic patterns can be
found. This new approach defined a generative model for predictive
event detection from documents by modelling the features based on
trajectory distributions.

However, in recent years, a number of surveillance systems have
appeared that apply these social mining techniques and that have
been widely used by public health organizations such as the World
Health Organization (WHO) and the European Centre for Disease
Prevention and Control [114]. Tracking and monitoring mechanisms
for early detection are critical in reducing the impact of epidemics
through rapid responses.

One of the earliest surveillance systems is the Global Public
Health Intelligence Network (GPHIN) [115] developed by the Public
Health Agency of Canada in collaboration with the WHO. It is a se-
cure, Web-based, multilingual warning tool that continuously mon-
itors and analyses global media data sources to identify information
about disease outbreaks and other events related to public health-
care. The information is filtered for relevance by an automated pro-
cess and is then analysed by Public Health Agency of Canada GPHIN
officials. From 2002 to 2003, this surveillance system was able to de-
tect the outbreak of SARS (severe acute respiratory syndrome).

From the BioCaster ontology in 2006 arose the BioCaster sys-
tem [ 116] for monitoring online media data. The system continuously
analyses documents reported from over 1700 RSS feeds, Google News,
WHO, ProMED-mail, and the European Media Monitor, among other
data sources. The extracted text is classified based on its topical rel-
evance and plotted onto a Google map using geo-information. The
system has four main stages: topic classification, named entity recog-
nition, disease/location detection, and event recognition. In the first
stage, the texts are classified as relevant or non-relevant using a naive
Bayes classifier. Then, for the relevant document corpora, entities of
interest from 18 concept types based on the ontology related to dis-
eases, viruses, bacteria, locations, and symptoms are searched.

HealthMap project [117] is a global disease alert map that uses
data from different sources such as Google News, expert-curated dis-
cussions such as ProMED-mail, and official organization reports such
as those from the WHO or Euro Surveillance, an automated real-time
system that monitors, organises, integrates, filters, visualises, and dis-
seminates online information about emerging diseases.

Another system that collects news from the Web related to hu-
man and animal health and that plots the data on Google Maps is
EpiSpider [118]. This tool automatically extracts information on in-
fectious disease outbreaks from multiple sources including ProMed-
mail and medical Web sites, and it is used as a surveillance system by
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Table 3
Basic features related to social big data applications in health care area.
Authors Ref. num. Summary Methods
Culotta [110] Track and predict outbreak detection using Twitter Classification (regression models)
Aramaki et al. [111] Classify tweets related to influenza Classification
Bodnar and Salathé [112] Assess disease outbreaks from tweets Regression methods
Fisichella et al. [113] Detect public health events Modelling trajectory distributions
GPHIN [115] Identify information about disease outbreaks and other events related to Classification documents for relevance
public healthcare
BioCaster [116] Monitoring online media data related to diseases, viruses, bacteria, locations Topic classification, named entity recognition,
and symptoms event recognition
HealthMap [117] Global disease alert map Mapping techniques
EpiSpider [118] Human and animal disease alert map Topic and location detection
Table 4
Basic features related to social big data applications in user experiences-based visualisation.
Authors Ref. num. Summary Methods
GGobi [123] Visualisation program for exploring high-dimensional data Supervised Classification, Unsupervised Classification, Inference
MIMO [124] Visualisation Framework for Real Time Decision Making in a Multi-Input Bayesian causal network, Decision Making Tools
Multi-Output System
Insense [126] Collecting user experiences into a continually growing and adapting Classification of patterns in sensor readings from a camera,

multimedia diary.
Many Eyes [127]
TweetPulse [128]

Creating visualisations in collaborative environment from upload data sets
Building social pulse by aggregating identical user experiences

microphone, and accelerometers
Visualisation layout algorithms
Visualising temporal dynamics of the thematic events

public healthcare organizations, a number of universities, and health
research organizations. Additionally, this system automatically con-
verts the topic and location information from the reports into RSS
feeds.

Finally, Lyon et al. [119] conducted a comparative assessment of
these three systems (BioCaster, EpiSpider, and HealthMap) related to
their ability to gather and analyse information that is relevant to pub-
lic health. EpiSpider obtained more relevant documents in this study.
However, depending on the language of each system, the ability to
acquire relevant information from different countries differed signif-
icantly. For instance, Biocaster gives special priority to languages from
the Asia-Pacific region, and EpiSpider only considers documents writ-
ten in English. Table 3 shows a summary of the previous applications
and their related functionalities and methods.

4.4. User experiences-based visualisation

Big data from social media needs to be visualised for better user
experiences and services. For example, the large volume of numeri-
cal data (usually in tabular form) can be transformed into different
formats. Consequently, user understandability can be increased. The
capability of supporting timely decisions based on visualising such
big data is essential to various domains, e.g., business success, clini-
cal treatments, cyber and national security, and disaster management
[120]. Thus, user-experience-based visualisation has been regarded
as important for supporting decision makers in making better deci-
sions. More particularly, visualisation is also regarded as a crucial data
analytic tool for social media [121]. It is important for understanding
users needs in social networking services.

There have been many visualisation approaches to collecting (and
improving) user experiences. One of the most well-known is inter-
active data analytics. Based on a set of features of the given big
data, users can interact with the visualisation-based analytics system.
Such systems are R-based software packages [122] and GGobi [123].
Moreover, some systems have been developed using statistical infer-
ences. A Bayesian inference scheme-based multi-input/multi-output
(MIMO) system [124] has been developed for better visualisation.

We can also consider life-logging services that record all user
experiences [125], which is also known as quantify-self. Various sen-
sors can capture continuous physiological data (e.g., mood, arousal,
and blood oxygen levels) together with user activities. In this context,

life caching has been presented as a collaborative social action of
storing and sharing users life events in an open environment. More
practically, this collaborative user experience has been applied to
gaming to encourage users. Systems such as Insense [126] are based
on wearable devices and can collect users experiences into a contin-
ually growing and adapting multimedia diary. The inSense system
uses the patterns in sensor readings from a camera, a microphone,
and accelerometers to classify the users activities and automati-
cally collect multimedia clips when the user is in an interesting
situation.

Moreover, visualisation systems such as Many Eyes [127] have
been designed to upload datasets and create visualisations in col-
laborative environments, allowing users to upload data, create
visualisation of that data, and leave comments on both the visu-
alisation and the data, providing a medium to foment discussion
among users. Many Eyes is designed for ordinary people and does
not require any extensive training or prior knowledge to take full
advantage of its functionalities.

Other visual analytics tools have shown some graphical visualisa-
tions for supporting efficient analytics of the given big data. Particu-
larly, TweetPulse [128] has built social pulses by aggregating identi-
cal user experiences in social networks (e.g., Twitter), and visualised
temporal dynamics of the thematic events. Finally, Table 4 provides a
summary of those applications related to the methods used for visu-
alisation based on user experiences.

5. Conclusions and open problems

With the large number and rapid growth of social media systems
and applications, social big data has become an important topic in
a broad array of research areas. The aim of this study has been to
provide a holistic view and insights for potentially helping to find
the most relevant solutions that are currently available for managing
knowledge in social media.

As such, we have investigated the state-of-the-art technologies
and applications for processing the big data from social media.
These technologies and applications were discussed in the following
aspects: (i) What are the main methodologies and technologies that
are available for gathering, storing, processing, and analysing big
data from social media? (ii) How does one analyse social big data
to discover meaningful patterns? and (iii) How can these patterns

http://dx.doi.org/10.1016/j.inffus.2015.08.005

Please cite this article as: G. Bello-Orgaz et al., Social big data: Recent achievements and new challenges, Information Fusion (2015),



http://dx.doi.org/10.1016/j.inffus.2015.08.005

2\transteam
cuej Uil cueie agr S

‘E,P/W #++". Downloaded from http://iranpaper.ir e T————

JID: INFFUS

[m5G;September 3, 2L __,_ &2 4ms e e

12 G. Bello-Orgaz et al. / Information Fusion 000 (2015) 1-15

be exploited as smart, useful user services through the currently
deployed examples in social-based applications?

More practically, this survey paper shows and describes a num-
ber of existing systems (e.g., frameworks, libraries, software applica-
tions) that have been developed and that are currently being used
in various domains and applications based on social media. The pa-
per has avoided describing or analysing those straightforward appli-
cations such as Facebook and Twitter that currently intensively use
big data technologies, instead focusing on other applications (such as
those related to marketing, crime analysis, or epidemic intelligence)
that could be of interest to potential readers.

Although it is extremely difficult to predict which of the different
issues studied in this work will be the next “trending topic” in social
big data research, from among all of the problems and topics that are
currently under study in different areas, we selected some "open top-
ics” related to privacy issues, streaming and online algorithms, and
data fusion visualisation, providing some insights and possible future
trends.

5.1. Privacy issues

In the era of online big data and social media, protecting the pri-
vacy of the users on social media has been regarded as an impor-
tant issue. Ironically, as the analytics introduced in this paper become
more advanced, the risk of privacy leakage is growing.

As such, many privacy-preserving studies have been proposed to
address privacy-related issues. We can note that there are two main
well-known approaches. The first one is to exploit “k-anonymity”,
which is a property possessed by certain anonymised data [129].
Given the private data and a set of specific fields, the system (or ser-
vice) has to make the data practically useful without identifying the
individuals who are the subjects of the data. The second approach is
“differential privacy”, which can provide an efficient way to maximise
the accuracy of queries from statistical databases while minimising
the chances of identifying its records [130].

However, there are still open issues related to privacy. Social iden-
tification is the important issue when social data are merged from
available sources, and secure data communication and graph match-
ing are potential research areas [89]. The second issue is evaluation. It
is not easy to evaluate and test privacy-preserving services with real
data. Therefore, it would be particularly interesting in the future to
consider how to build useful benchmark datasets for evaluation.

Moreover, we have to consider this data privacy issues in many
other research areas. In the context of law (also, international law)
enforcement, data privacy must be prevented from any illegal usages,
whereas governments tend to trump the user privacy for the purpose
of national securities [131].

Also, developing educational program for technicians (also, stu-
dents) is important [132]. It is still open issue on how (and what) to
design the curriculum for the data privacy.

5.2. Streaming and online algorithms

One of the current main challenges in data mining related to
big data problems is to find adequate approaches to analysing mas-
sive amounts of online data (or data streams). Because classifica-
tion methods require previous labelling, these methods also require
great effort for real-time analysis. However, because unsupervised
techniques do not need this previous process, clustering has become
a promising field for real-time analysis, especially when these data
come from social media sources. When data streams are analysed, it
is important to consider the analysis goal in order to determine the
best type of algorithm to be used. We were able to divide data stream
analysis into two main categories:

o Offline analysis: We consider a portion of data (usually large data)
and apply an offline clustering algorithm to analyse the data.

o Online analysis: The data are analysed in real time. These kinds of
algorithms are constantly receiving new data and are not usually
able to keep past information.

A new generation of online [133,134] and streaming [135,136] al-
gorithms is currently being developed in order to manage social big
data challenges, and these algorithms require high scalability in both
memory consumption [137] and time computation. Some new de-
velopments related to traditional clustering algorithms, such as the
K-mean [138], EM [139], which has been modified to work with the
MapReduce paradigm, and more sophisticated approaches based on
graph computing (such as spectral clustering), are currently being de-
veloped [140-142] into more efficient versions from the state-of-the-
art algorithms [143,144].

5.3. Methods for data fusion & data visualisation

Finally, data fusion and data visualisation are two clear challenges
in social big data. Although both areas have been intensively studied
with regard to large, distributed, heterogeneous, and streaming data
fusion [145] and data visualisation and analysis [146], the current,
rapid evolution of social media sources jointly with big data tech-
nologies creates some particularly interesting challenges related to:

o Obtaining more reliable methods for fusing the multiple features
of multimedia objects for social media applications [147].
Studying the dynamics of individual and group behaviour, char-
acterising patterns of information diffusion, and identifying influ-
ential individuals in social networks and other social media-based
applications [148].

Identifying events [149] in social media documents via clustering

and using similarity metric learning approaches to produce high-

quality clustering results [150].

o The open problems and challenges related to visual analytics
[146], especially related to the capacity to collect and store new
data, are rapidly increasing in number, including the ability to
analyse these data volumes[151], to record data about the move-
ment of people and objects at a large scale [152], and to analyse
spatio-temporal data and solve spatio-temporal problems in so-
cial media [153], among others.
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