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Abstract- Cache memories can work as buffer between 
processors and main memories. It enables rapid access of data 
for a processor in operation. Set-associativity provides optimality 
in mapping of cache memories and reduction of cache miss 
probability. Design of a high speed cache has always been a 
desirable criteria of hardware experts as it increases processor 
utilization. Exploiting fault tolerance within such a cache 
memory of higher throughput ensures reliable data transfer and 
is an open research problem in the domain of high-performance 
computing. This paper proposes a design of low-order 
interleaved set-associative cache memory with lesser response 
time and exploits a high degree of fault tolerance. 
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I. INTRODUCTION 

Design of high speed computers has always remained a 
research challenge for computer engineers. High end gigahertz 
ranged processors have been successfully designed and 
marketed since last decade. The performance of a computer is 
necessarily dependent on the relatively slower storages its 
processor has to work with. Bulk amount of data gets 
transferred between the processor and the relatively slower 
hierarchy of memory. This causes delay in the overall response 
time of the processor. It is known as Von-Neumann bottleneck. 

Several design steps were taken to eliminate the speed gap 
between processor and memory. Cache memory was 
introduced as a high speed intermediate storage between the 
primary memory and the processor [1] . Cache memories are 
widely used in von-neumann machines which has simple low 
speed scalar processors [1] , [2] but became unimpressive in 
harvard computers that have high speed vector processors. 
Changes in storage technology to design high speed memory 
devices, increase of memory wordlength and width of databus 
[3] etc. can be used as alternative ways for increasing 
throughputs of memory. Again, these design changes had their 
own limitations due to the predictable saturation of moore's 
law and chances of inappropriate power dissipation in low 
power VLSI circuits. The most formidable alternative to these 
approaches is an interleaved storage system. Here the memory 
is segmented into equi-banks of storage modules which are 
connected in an interleaved fashion [4] , [5] . Detailed study, 
analysis and verification of structure and speed of interleaved 
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memories have been done in many previous research articles 
[6] , [7] , [8] , [9] . The speed of interleaved memories depends on 
how the memory modules are addressed [8] . Two types of 
memory interleaving methods exists. In a high-order 
interleaved structure the most significant address bus lines are 
used to select banks of memory. Whereas, in low-order 
interleaved structure bank selection is done by least significant 
address bits. Data storing methods for interleaved memories 
adjacent to custom processors have already been surveyed [10]. 
Detailed analysis and study on the power and thermal 
efficiency of interleaved memories were also done [11] . 

Low and high-order interleaved memories have their own 
share of limitations. High-order interleaved memory is slower 
and thus, lower in bandwidth. Whereas, low-order interleaved 
memories are non-modular by nature, i.e. a fault in any of the 
banks adversely effects the whole address space [12] . Field 
programmable gate array (FPGA) based memory design are 
can be faulty and there exists several corrective methods of 
these faults [13] . FPGA based design of high-order interleaved 
fault tolerant memory are already established [14]. Efficient 
low-order interleaved fault tolerant memories has also been 
realised [15] . FPGA based grid computation methods [16] use 
fault-intolerant low-order interleaved memories. 

In this paper, a fault tolerant design of low-order 
interleaved cache memory is proposed and the structure has 
been implemented on FPGA. One or more faulty cache lines 
can easily be bypassed in the reconfigurable platform with 
reallocation of the address space among the fault free cache 
lines. With such a line level fault tolerant scheme which is 
proposed in this paper, only the faulty cache lines are removed 
from the address space rather than a cache set as a whole. This 
new method also includes the speed advantage of low-order 
interleaving and brings in fault tolerance property within the 
cache memory by insignificantly reducing the addressable 
cache memory space. The proposed cache memory structure is 
not only unique but also advantageous over the already 
existing cache architectures. 

II. ARCHITECTURE OF SET ASSOCIATIVE CACHE 

Figure.l gives an example of a 4-way set-associative cache 
memory with 8 lines being mapped with a main memory with 4 

 

 

 



blocks. Each of the blocks of main memory contains 4 words 
of data. These words can be reside in the cache memory in 
such a style that words from block#O, block#2 can only be 
loaded in set#O, block#l can only be loaded in set#l of the 
cache. As a matter of fact, values 1,5 of block#O gets loaded 
into the first two lines of set#O in cache and values 3,7 of 
block#2 gets loaded into the last two lines of set#O in cache. 
Similarly, values 2,6 of block#l gets loaded into the first two 
lines of set#1 in cache and values 4,8 of block#3 gets loaded 
into the last two lines of set# 1 in cache. So, it is evident that all 
words of a block of main memory cannot reside with a cache 
set at the same time and depending on the requirement of the 
processor these leftout words can be loaded into cache. 

Figure.2 describes the post cache replacement senario 
where words valued 9 and 15 from block#O and block#2 
respectively gets loaded into the first two lines of set#O based 
on fIrst-in-fIrst-out (FIFO) cache replacement scheme. 
Similarly, words valued 10 and 12 from block#1 and block#3 
respectively gets loaded into the first two lines of set#l based 
on FIFO cache replacement scheme. 

III. PROPOSED FAULT TOLERANT INTERLEAVED CACHE 

A. High-Order Interleaved Fault Tolerant Cache 
A 4-way set associative cache memory as shown in fig. 3 

can be interleaved in a high-order fashion to make it fault 
tolerant. 8-individual lines of the cache can be locally 
addresses using 3 address lines. Here, the cache is divided into 
2-sets, two least significant address lines (AJAo) can be used to 
point lines within a set. Whereas, the most significant address 
line Az is used as a select line of a multiplexer which lets the 
output data lines from the cache-sets pass through it. Here, if 
any faulty condition occur in lines of set#O then this set can be 
removed from the cache structure simply by changing the bit 
value of Az. But, high-order interleaved cache is slower and the 
speed advantage of cache memory is lost. 

Fig. 1. 4-way Set-Associative Cache with 8 lines 
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Fig. 2. Cache Replacement within 4-way Set-Associative Cache 
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Fig. 3. High-Order Interleaved 4-way Set-Associative Cache 

B. Low-Order Interleaved Fault Tolerant Cache 
If the cache memory is low-order interleaved then it turns 

out to be a high speed one. But, low-order interleaved 
structures are not modular in nature and therefore, inherently 
fault-intolerant. Fig. 4 gives an idea of low-order interleaved 
cache structure. The cache is divided into 2-sets, two most 
significant address lines (AzAI) can be used to point lines 
within a set. Whereas, the least significant address line Ao is 
used as a select line of a multiplexer which lets the output data 
lines from the cache-sets pass through it. Here, if any faulty 
condition occur in lines of set#O then this set cannot be 
removed from the cache structure by changing the bit value of 
Ao as it would jeoperdise the entire cache addressing. 
Therefore, a fine grained approach is needed to remove the 
faulty line(s) from the cache address space without disturbing 
the contiguity and set-associativity of the cache memory. Fig.5 
and fig.6 depicts a clear picture of the proposed structure incase 
of single and multiple faults respectively within this low-order 

 

 

 

 



interleaved cache structure. In fig.S as fault lies in line with 
address 100, this cache line is bypassed and the line addresses 
are reallocated in such a pattern that it avoids any gap in 
address space. So, address 100 now points to the next non­
faulty cache line which was previously addresses by 101, 
address 101 points to the next cache line (previous address 
110) and so on. The last cache line address points to the faulty 
cache line and thus address III holds a bit sequence in high 
impedence state (ZZZZZZZZ). 

In fig.6 cache lines with initial addresses of 0 10 and 10 1 are 
supposed to be faulty. Bypassing these cache lines and 
reallocation of the cache address space replaces old addresses 
of 011 with 010, 100 with 011, 110 with 100, 111 with 101. 
Faulty cache lines with initial address of 0 1 0 and 101 now hold 
addresses 110 and 111 and both hold bit sequences in high 
impedence states. Figure.7 shows the same cache lines to be 
faulty and the reallocation of the cache address space is also 
done in the same fashion as described above. The only 
difference with that of fig. 6 is the cache line values. Here (in 
fig.7) the values stored in cache lines reflect a post-replacement 
senario. The values 9, 11, Sand 10, 4, 6 entered set#O and 
set#l respectively from the designated blocks of main memory 
after cache replacement. 

Here, the fault avoidance scheme does not hamper the low­
order interleaving structure, retains the speed advantage and 
prevents wastage of valuable non-faulty cache lines. 
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Fig. 4. Low-Order Interleaved 4-way Set-Associative Cache 
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Fig. 5. Single line fault in a low-order interleaved cache 
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Fig. 6. Multiple line faults in a low-order interleaved cache 

SETiiO 

2 x l 
MUX 

8 Bit Data 

2 xl 
MUX 

SBitData 

Fig. 7. Multiple line faults in a low-order interleaved cache after cache 
replacements 

C. Algorithmsfor Cache Address Space Reallocation 
Algorithm for the FIFO replacement and cache address space 
reallocation in occurrence of a single cache line fault is shown 
in fig. 8. 

LI: SETCOUNT<=O; 
L2: IF data is not in cache 

THEN 
(CACHE_ADDR_BASE+COUNT) <= MEM (CONTENT); 
COUNT<=COUNI+l; 
IF (CACHE_ADDR_BASE+COUNT) is CACHE_ADDR_LAST 

THEN GOTO L1; 
ELSE GOIO L2; 

ELSE 
IF fault location have address CACHE_ADDR, 

THEN (CACHE_ADDR) <= CACHE_ADDR + 1; 
(CACHE _ ADDR+ 1) <= CACHE _ ADDR + 2; 

REPEAT TILL 
(CACHE_ADDR_Last-l) <= CACHE_ADDR_Last; 
Content (CACHE_ADDR_Last) <= 'ZZZZZZZZ'; 

Fig.8. Algorithm of replacement and cache address space reallocation for 
single cache line fault 

The algorithm for the FIFO replacement and cache address 
space reallocation in occurrence of multiple cache line faults is 
shown in fig. 9. 

 

 

 



Ll: SET COUNTl <=0; 
L2: IF data is not in cache 

THEN 
(CACHE_ADDR_BASE+COUNTl) <= MEM (CONTENT); 
COUNTl <=COUNTl + 1; 

ELSE 

IF (CACHE_ADDR_BASE+COUNTI) is 
CACHE_ADDR_LAST 
THEN GOTO Ll; 

ELSE GOTO L2; 

SET COUNT2<=0; 
L3: IF fault location is (CACHE_ADDR+COUNT2) 

THEN (COUNT2) <=COUNT2+ 1; 
CACHE_ADDR<=CACHE_ADDR+COUNT2; 
GOTO L3; 

ELSE 
(CACHE _ ADDR)<=CACHE _ ADDR+COUNT2; 

L4: IF fault location is (CACHE_ADDR+COUNT2+1) 
THEN (COUNT2) <= COUNT2+ I; 

(CACHE_ADDR+l)<=CACHE_ADDR+COUNT2+ 1; 
GOTOL4; 

ELSE 
(CACHE_ADDR+l)<=CACHE_ADDR+COUNT2+ 1; 
REPEAT TILL 

(CACHE _ ADDR _ Last-COUNT2) <= CACHE _ ADDR _LAST; 

Content (CACHE_ADDR_Last-COUNT2) <= 'ZZZZZZZZ'; 
Content (CACHE_ADDR_Last-COUNT2+1) < = 'ZZZZZZZZ'; 

REPEAT TILL 
Content (CACHE_ADDR Last) <= 'ZZZZZZZZ'; 

Fig.9. Algorithm of replacement and cache address space reallocation for 
multiple cache line faults 

IV. SIMULATION RESULTS OF FAULTS OCCURING WITHIN 

THE PROPOSED LOW-ORDER INTERLEAVED CACHE 

Figure. 10 gives the simulation result for occurance of faults 
within the proposed fault tolerant low-order interleaved cache 
as shown in fig.7. Contents of the main memory blocks are 
shown by 'memout'. In every positive edge of clock pulse 
'cp', the content of cache line for given 'address' is shown in 
'cOO'. Signal 'Con' is used to inject the faulty lines into the 
system. The system is designed as it can bypass the data of the 
faulty lines and display the data of next cache line and so on. 
Here, fault is injected in the 2nd line containing value I I and 
5th line containing value 6. The simulation bypasses this 
physical lines from the cache set system and allocates its 
address to the next physical cache line. So, the simulation 
result shows the value 4 in the 2nd line in place of 11 and 
value 7 in the 5th line in place of 6. It clearly shows a valuatic 
left shift of all cache lines succeeding the faulty lines 
allocating high impedence values for the last two cache lines. 

V. DESIGN IMPLEMENTATION ON XILINX FPGA 

The design of the proposed low-order interleaved fault tolerant 
cache has been implemented on Xilinx Spartan II FPGA 
(device: xc2s200-5pq208). Figure.II shows the technology 
schematic of the fault tolerant cache and green and yellow 
colored regions of fig. 12 gives the positioning of the design 
within Xilinx SpartanII FPGA (xc2s200-5pq208). There has 
been 9% utilization in the number of slices and 4-input LUTs. 
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Fig.11 Technology Schematic for the fault tolerant low-order interleaved 
cache design in Spartanll FPGA xc2s200-5pq208 

Fig.12 Placement of the fault tolerant low-order interleaved cache design in 
Spartanll FPGA xc2s200-5pq208 

The number of bonded lOBs has also been utilized 50% and 
time delay for mapping the total data path is in approximately 
13ns. 

VI. EXPERIMENTAL CASE STUDY 

An application of this low-order interleaved fault tolerant 
cache is in conjunction with an image processor. The proposed 
cache structure can be used for faster and reliable retrieval of 
image data. Faults in one or more cache lines do not pose any 
problem in regeneration of the stored image as the cache 
memory is highly fault tolerant. Fault correction mechanisms 
have also been exploited so that the regenerated image 
resembles the original one. Again the access rate of the newly 

 

 

 



designed low-order cache is much higher than a non­
interleaved or high-order interleaved architecture. An 
experimental case study has been performed to verify the 
efficiency of this fault tolerant cache taking example of real 
image data. 

An image is nothing but a 2-dimensional matrix 
having pixel values stored in X and Y co-ordinates. If there 
are four memory blocks within a main memory structure, then 
the pixel values corresponding to X and Y co-ordinates can be 
stored in block#O (if XLSB=even, Y LSB=even), block# I (if 
XLSB=even, Y LSB=odd), block#2 (if XLsB=odd, Y LSB=even) or 
block#3 (if XLsB=odd, Y LSB=odd). Considering the image of 
fig.13, its pixel information is shown in fig. 14. Suppose a 
block of pixel information is selected (fig. IS), divided into 
four sub blocks (fig. 16) and pixel values from each sub blocks 
are stored in different blocks of main memory in the above 
stated style. Let this pixel data from the main memory be 
loaded (as in fig.17 & fig.18) into the cache and then only be 
accessed by image processor. Now, if the cache develops 
faults in some of its lines (say the last line of set#O and first 
line of set#l) then the image information stored within those 
faulty lines gets lost (fig. 19). Trying to regenerate the image 
from the stored pixel data would have given us a coarse 
grained approximated image as fig.20 if the cache is not a 
fault tolerant one. But, if the pixel data (fig. 14) of the original 
image is loaded from the main memory to the proposed fault 
tolerant low-order interleaved cache (fig.21 and fig.22), then 
the regenerated image (fig.23) is visually identical to the 
original image as the pixel information loss is taken care of 
and most of the desired pixel information (fig.24) can be 
retrieved. 
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Fig.14 Pixel data of original image 
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Fig.16 Four sub blocks from the selected block (fig. IS) of pixels 
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Fig.17 initial loading of pixel data from main memory to cache-sets 
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Fig.17 subsequent loading or replacement of pixel data from main memory 
to cache-sets 
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Fig.19 Pixel data retrieved from faulty memory Fig.20 Faulty image 

 

 

 



Fig. 21 the first phase of fault tolerance of the two caches sets 

Fig. 22 the second phase of fault tolerance of the two caches sets 
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Fig.23 Regenerated image Fig.24 data from proposed cache (fig.21 & fig.22) 

VII. CONCLUSIONS 

In this paper, fault tolerance has been incorporated within a 
low-order interleaved cache with a set-associative structure. 
The design of the proposed cache is not only fault tolerant but 
also of high data access rate in comparison to existing cache 
architectures. Here lies the novelty of the new design. This 
newly designed cache memory is experimentally found to be 
useful in adjacency of image processors. Again in FPGA 
based grid computations [16] where grid points are to be 
stored in memory banks and to be retrieved by the processor 
via a cache this proposed cache architecture can really prove 
beneficial for high speed reliable grid point access. Fine 
grained cache-line level fault tolerance demonstrated in this 
work also reduces the wastage of valuable storage space of 
cache. Implementing this fault tolerant cache architecture for 
more advanced cache replacement schemes remains as future 
scope of research. 
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