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Abstract— Cache memories can work as buffer between
processors and main memories. It enables rapid access of data
for a processor in operation. Set-associativity provides optimality
in mapping of cache memories and reduction of cache miss
probability. Design of a high speed cache has always been a
desirable criteria of hardware experts as it increases processor
utilization. Exploiting fault tolerance within such a cache
memory of higher throughput ensures reliable data transfer and
is an open research problem in the domain of high-performance
computing. This paper proposes a design of low-order
interleaved set-associative cache memory with lesser response
time and exploits a high degree of fault tolerance.
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I. INTRODUCTION

Design of high speed computers has always remained a
research challenge for computer engineers. High end gigahertz
ranged processors have been successfully designed and
marketed since last decade. The performance of a computer is
necessarily dependent on the relatively slower storages its
processor has to work with. Bulk amount of data gets
transferred between the processor and the relatively slower
hierarchy of memory. This causes delay in the overall response
time of the processor. It is known as Von-Neumann bottleneck.

Several design steps were taken to eliminate the speed gap
between processor and memory. Cache memory was
introduced as a high speed intermediate storage between the
primary memory and the processor [1]. Cache memories are
widely used in von-neumann machines which has simple low
speed scalar processors [1],[2] but became unimpressive in
harvard computers that have high speed vector processors.
Changes in storage technology to design high speed memory
devices, increase of memory wordlength and width of databus
[3] etc. can be used as alternative ways for increasing
throughputs of memory. Again, these design changes had their
own limitations due to the predictable saturation of moore’s
law and chances of inappropriate power dissipation in low
power VLSI circuits. The most formidable alternative to these
approaches is an interleaved storage system. Here the memory
is segmented into equi-banks of storage modules which are
connected in an interleaved fashion [4],[5]. Detailed study,
analysis and verification of structure and speed of interleaved
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memories have been done in many previous research articles
[6],[71,[81,[9]. The speed of interleaved memories depends on
how the memory modules are addressed [8]. Two types of
memory interleaving methods exists. In a high-order
interleaved structure the most significant address bus lines are
used to select banks of memory. Whereas, in low-order
interleaved structure bank selection is done by least significant
address bits. Data storing methods for interleaved memories
adjacent to custom processors have already been surveyed [10].
Detailed analysis and study on the power and thermal
efficiency of interleaved memories were also done [11].

Low and high-order interleaved memories have their own
share of limitations. High-order interleaved memory is slower
and thus, lower in bandwidth. Whereas, low-order interleaved
memories are non-modular by nature, i.e. a fault in any of the
banks adversely effects the whole address space [12]. Field
programmable gate array (FPGA) based memory design are
can be faulty and there exists several corrective methods of
these faults [13]. FPGA based design of high-order interleaved
fault tolerant memory are already established [14] Efficient
low-order interleaved fault tolerant memories has also been
realised [15]. FPGA based grid computation methods [16] use
fault-intolerant low-order interleaved memories.

In this paper, a fault tolerant design of low-order
interleaved cache memory is proposed and the structure has
been implemented on FPGA. One or more faulty cache lines
can easily be bypassed in the reconfigurable platform with
reallocation of the address space among the fault free cache
lines. With such a line level fault tolerant scheme which is
proposed in this paper, only the faulty cache lines are removed
from the address space rather than a cache set as a whole. This
new method also includes the speed advantage of low-order
interleaving and brings in fault tolerance property within the
cache memory by insignificantly reducing the addressable
cache memory space. The proposed cache memory structure is
not only unique but also advantageous over the already
existing cache architectures.

II. ARCHITECTURE OF SET ASSOCIATIVE CACHE

Figure.1 gives an example of a 4-way set-associative cache
memory with § lines being mapped with a main memory with 4
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blocks. Each of the blocks of main memory contains 4 words
of data. These words can be reside in the cache memory in
such a style that words from block#0, block#2 can only be
loaded in set#0, block#1 can only be loaded in set#1 of the
cache. As a matter of fact, values 1,5 of block#0 gets loaded
into the first two lines of set#0 in cache and values 3,7 of
block#2 gets loaded into the last two lines of set#0 in cache.
Similarly, values 2,6 of block#1 gets loaded into the first two
lines of set#1 in cache and values 4,8 of block#3 gets loaded
into the last two lines of set#1 in cache. So, it is evident that all
words of a block of main memory cannot reside with a cache
set at the same time and depending on the requirement of the
processor these leftout words can be loaded into cache.

Figure.2 describes the post cache replacement senario
where words valued 9 and 15 from block#0 and block#2
respectively gets loaded into the first two lines of set#0 based
on first-in-first-out (FIFO) cache replacement scheme.
Similarly, words valued 10 and 12 from block#1 and block#3
respectively gets loaded into the first two lines of set#1 based
on FIFO cache replacement scheme.

III.  PROPOSED FAULT TOLERANT INTERLEAVED CACHE

A.  High-Order Interleaved Fault Tolerant Cache

A 4-way set associative cache memory as shown in fig. 3
can be interleaved in a high-order fashion to make it fault
tolerant. 8-individual lines of the cache can be locally
addresses using 3 address lines. Here, the cache is divided into
2-sets, two least significant address lines (A;Aq) can be used to
point lines within a set. Whereas, the most significant address
line A, is used as a select line of a multiplexer which lets the
output data lines from the cache-sets pass through it. Here, if
any faulty condition occur in lines of set#0 then this set can be
removed from the cache structure simply by changing the bit
value of A,. But, high-order interleaved cache is slower and the
speed advantage of cache memory is lost.
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Fig. 1. 4-way Set-Associative Cache with 8 lines
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Fig. 2. Cache Replacement within 4-way Set-Associative Cache
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Fig. 3. High-Order Interleaved 4-way Set-Associative Cache

B.  Low-Order Interleaved Fault Tolerant Cache

If the cache memory is low-order interleaved then it turns
out to be a high speed one. But, low-order interleaved
structures are not modular in nature and therefore, inherently
fault-intolerant. Fig. 4 gives an idea of low-order interleaved
cache structure. The cache is divided into 2-sets, two most
significant address lines (A,A;) can be used to point lines
within a set. Whereas, the least significant address line Ag is
used as a select line of a multiplexer which lets the output data
lines from the cache-sets pass through it. Here, if any faulty
condition occur in lines of set#0 then this set cannot be
removed from the cache structure by changing the bit value of
Aq as it would jeoperdise the entire cache addressing.
Therefore, a fine grained approach is needed to remove the
faulty line(s) from the cache address space without disturbing
the contiguity and set-associativity of the cache memory. Fig.5
and fig.6 depicts a clear picture of the proposed structure incase
of single and multiple faults respectively within this low-order
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interleaved cache structure. In fig.5 as fault lies in line with
address 100, this cache line is bypassed and the line addresses
are reallocated in such a pattern that it avoids any gap in
address space. So, address 100 now points to the next non-
faulty cache line which was previously addresses by 101,
address 101 points to the next cache line (previous address
110) and so on. The last cache line address points to the faulty
cache line and thus address 111 holds a bit sequence in high
impedence state (ZZZ727777).

In fig.6 cache lines with initial addresses of 010 and 101 are
supposed to be faulty. Bypassing these cache lines and
reallocation of the cache address space replaces old addresses
of 011 with 010, 100 with 011, 110 with 100, 111 with 101.
Faulty cache lines with initial address of 010 and 101 now hold
addresses 110 and 111 and both hold bit sequences in high
impedence states. Figure.7 shows the same cache lines to be
faulty and the reallocation of the cache address space is also
done in the same fashion as described above. The only
difference with that of fig. 6 is the cache line values. Here (in
fig.7) the values stored in cache lines reflect a post-replacement
senario. The values 9, 11, 5 and 10, 4, 6 entered set#0 and
set#1 respectively from the designated blocks of main memory
after cache replacement.

Here, the fault avoidance scheme does not hamper the low-
order interleaving structure, retains the speed advantage and
prevents wastage of valuable non-faulty cache lines.
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Fig. 5. Single line fault in a low-order interleaved cache
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Fig. 6. Multiple line faults in a low-order interleaved cache
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Fig. 7. Multiple line faults in a low-order interleaved cache after cache
replacements

C. Algorithms for Cache Address Space Reallocation

Algorithm for the FIFO replacement and cache address space
reallocation in occurrence of a single cache line fault is shown
in fig. 8.

L1: SET COUNT<=0;
L2: JF data is not in cache
THEN
(CACHE_ADDR_BASE+COUNT) <= MEM (CONTENT);
COUNT<=COUNT+;
IF (CACHE_ADDR_BASE+COUNT) is CACHE_ADDR_LAST
THEN GOTO L1;
ELSE GOTO L2;
ELSE
IF fault location have address CACHE_ADDR,
THEN (CACHE_ADDR) <= CACHE_ADDR + 1;
(CACHE_ADDR+1) <= CACHE_ADDR + 2;
REPEAT TILL
(CACHE_ADDR_Last-1) <= CACHE_ADDR_Last;
Content (CACHE_ADDR _Last) <= ‘27777777,

Fig8. Algorithm of replacement and cache address space reallocation for
single cache line fault

The algorithm for the FIFO replacement and cache address
space reallocation in occurrence of multiple cache line faults is
shown in fig. 9.
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L1: SET COUNTI<=0;
L2: IF data is not in cache
THEN
(CACHE_ADDR_BASE+COUNT1) <= MEM (CONTENT);
COUNT1<=COUNTI1+1;
IF (CACHE_ADDR_BASE+COUNTT1) is
CACHE_ADDR_LAST
THEN GOTO L1;
ELSE GOTO L2,
ELSE
SET COUNT2<=0;
L3: /F fault location is (CACHE_ADDR+COUNT?2)
THEN (COUNT2) <=COUNT2+1;
CACHE_ADDR<=CACHE_ADDR+COUNT2;
GOTO L3,
ELSE
(CACHE_ADDR)<=CACHE_ADDR+COUNT2;
L4: [F fault location is (CACHE_ADDR+COUNT2+1)
THEN (COUNT2) <= COUNT2+1;
(CACHE_ADDR+)<=CACHE_ADDR+COUNT2+1;
GOTO L4,

ELSE
(CACHE_ADDR+1)<=CACHE_ADDR+COUNT2+1;
REPEAT TILL

(CACHE_ADDR_Last-COUNT2) <= CACHE_ADDR_LAST;

Content (CACHE_ADDR_Last-COUNT2) <= ‘272777777,
Content (CACHE_ADDR_Last-COUNT2+1) <= 27272727777’

REPEAT TILL

Content (CACHE_ADDR Last) <= ‘ZZZ77777’;

End Time:
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Fig.10. Simulation result of address reallocation for line faults within low-
order interleaved cache structure [Xilinx ISE8.2i simulator]
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Fig.9. Algorithm of replacement and cache address space reallocation for
multiple cache line faults

IV.  SIMULATION RESULTS OF FAULTS OCCURING WITHIN
THE PROPOSED LOW-ORDER INTERLEAVED CACHE

Figure. 10 gives the simulation result for occurance of faults
within the proposed fault tolerant low-order interleaved cache
as shown in fig.7. Contents of the main memory blocks are
shown by ‘memout’. In every positive edge of clock pulse
‘cp’, the content of cache line for given ‘address’ is shown in
‘c00’. Signal ‘f on’ is used to inject the faulty lines into the
system. The system is designed as it can bypass the data of the
faulty lines and display the data of next cache line and so on.
Here, fault is injected in the 2nd line containing value 11 and
Sth line containing value 6. The simulation bypasses this
physical lines from the cache set system and allocates its
address to the next physical cache line. So, the simulation
result shows the value 4 in the 2nd line in place of 11 and
value 7 in the 5th line in place of 6. It clearly shows a valuatic
left shift of all cache lines succeeding the faulty lines
allocating high impedence values for the last two cache lines.

V. DESIGN IMPLEMENTATION ON XILINX FPGA

The design of the proposed low-order interleaved fault tolerant
cache has been implemented on Xilinx Spartanll FPGA
(device: xc2s200-5pq208). Figure.11 shows the technology
schematic of the fault tolerant cache and green and yellow
colored regions of fig.12 gives the positioning of the design
within Xilinx Spartanll FPGA (xc2s200-5pq208). There has
been 9% utilization in the number of slices and 4-input LUTs.

Fig1l Technology Schematic for the fault tolerant low-order interleaved
cache design in Spartanll FPGA xc2s200-5pq208
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Fig.12 Placement of the fault tolerant low-order interleaved cache design in
Spartanll FPGA xc2s200-5pq208

The number of bonded 10Bs has also been utilized 50% and
time delay for mapping the total data path is in approximately
13ns.

VI. EXPERIMENTAL CASE STUDY

An application of this low-order interleaved fault tolerant
cache is in conjunction with an image processor. The proposed
cache structure can be used for faster and reliable retrieval of
image data. Faults in one or more cache lines do not pose any
problem in regeneration of the stored image as the cache
memory is highly fault tolerant. Fault correction mechanisms
have also been exploited so that the regenerated image
resembles the original one. Again the access rate of the newly
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designed low-order cache is much higher than a non- MAIN MEMORY

interleaved or high-order interleaved architecture. An BLoCKs

experimental case study has been performed to verify the 157

efficiency of this fault tolerant cache taking example of real w4 CACHE

image data. ::; \ sEm0
An image is nothing but a 2-dimensional matrix N[

having pixel values stored in X and Y co-ordinates. If there preckel 17

are four memory blocks within a main memory structure, then T 137

the pixel values corresponding to X and Y co-ordinates can be 2|9 2l =

stored in block#0 (if X sg=even, Yigg=even), block#1 (if 5 .

Xisg=even, Yygg=odd), block#2 (if X sg=0dd, Y sg=even) or BLOCK#2 [

block#3 (if X sg=0dd, Y sg=0dd). Considering the image of 137 | 110

fig.13, its pixel information is shown in fig.14. Suppose a 19; ’;: ';0

block of pixel information is selected (fig.15), divided into o ®

four sub blocks (fig.16) and pixel values from each sub blocks ]

are stored in different blocks of main memory in the above BL%COK“ /

stated style. Let this pixel data from the main memory be 53

loaded (as in fig.17 & fig.18) into the cache and then only be t

accessed by image processor. Now, if the cache develops =

faults in some of its lines (say the last line of set#0 and first
line of set#1) then the image information stored within those

: . . Fig.17 initial loading of pixel data from main memory to cache-sets
faulty lines gets lost (fig.19). Trying to regenerate the image

from the stored pixel data would have given us a coarse MAIN MEMORY
grained approximated image as fig.20 if the cache is not a N
fault tolerant one. But, if the pixel data (fig.14) of the original 157
image is loaded from the main memory to the proposed fault 1w |4 CACHE
tolerant low-order interleaved cache (fig.21 and fig.22), then 143 sET20
g . . . g 104
the regenerated image (fig.23) is visually identical to the Y
original image as the pixel information loss is taken care of HL?_CK‘” 104
. . . . 33 -
and most of the desired pixel information (fig.24) can be ™ 123
retrieved. m |9 A
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Fig.13 Original Image Fig.14 Pixel data of original image &

Fig.17 subsequent loading or replacement of pixel data from main memory
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Fig. 21 the first phase of fault tolerance of the two caches sets
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Fig23 Regenerated image Fig24 data from proposed cache (fig21 & fig.22)

VIL

In this paper, fault tolerance has been incorporated within a
low-order interleaved cache with a set-associative structure.
The design of the proposed cache is not only fault tolerant but
also of high data access rate in comparison to existing cache
architectures. Here lies the novelty of the new design. This
newly designed cache memory is experimentally found to be
useful in adjacency of image processors. Again in FPGA
based grid computations [16] where grid points are to be
stored in memory banks and to be retrieved by the processor
via a cache this proposed cache architecture can really prove
beneficial for high speed reliable grid point access. Fine
grained cache-line level fault tolerance demonstrated in this
work also reduces the wastage of valuable storage space of
cache. Implementing this fault tolerant cache architecture for
more advanced cache replacement schemes remains as future
scope of research.
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